Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood RMS velocity.
نویسندگان
چکیده
This study proposes the implementation of an algorithm allowing one to derive absolute blood root-mean-square (RMS) velocity values from laser Doppler perfusion meter (LDP) data. The algorithm is based on the quasi-elastic light scattering theory and holds for multiple scattering. While standard LDP measurements are normally applicable to a small region of interest (approximately 1 mm2), the present method allows the analysis of both small and large tissue volumes with small and large interoptode spacings (e.g., 1.5 cm). The applicability and the limits of the method are demonstrated with measurements on human skeletal muscle using a custom-built near-infrared LDP meter. Human brachioradialis muscle RMS velocity values of 9.99 +/- 0.01 and 5.58 +/- 0.03 mm s(-10 at 1.5 cm and of 5.18 +/- 0.01 and 2.54 +/- 0.09 mm s(-1) at 2 cm were found when the arm was (a) at rest and (b) occluded, respectively. At very large optode spacings or very high moving particle densities, the theory developed here would need to be amended to take into account second-order effects.
منابع مشابه
Mapping human skeletal muscle perforator vessels using a quantum well infrared photodetector (QWIP) might explain the variability of NIRS and LDF measurements.
Near-infrared spectroscopy (NIRS) and laser Doppler flowmetry (LDF) have become the techniques of choice allowing the non-invasive study of local human skeletal muscle metabolism and blood perfusion on a small tissue volume (a few cm3). However, it has been shown that both NIRS and LDF measurements may show a large spatial variability depending on the position of the optodes over the investigat...
متن کاملLaser-Doppler flowmetry at large interoptode spacing in human tibia diaphysis: Monte Carlo simulations and preliminary experimental results.
Laser-Doppler flowmetry (LDF) is an outstanding tool to monitor blood flow in a continuous and non-invasive way. In this work, we study LDF at large interoptode spacing applied to a human bone model (i.e. tibia diaphysis). To that aim, we first performed an extensive set of Monte Carlo (MC) simulations for 10 and 25 mm interoptode spacing. Second, we have assembled a dedicated LDF instrumentati...
متن کاملAbsorption and scattering coefficient dependence of laser-Doppler flowmetry models for large tissue volumes.
Based on quasi-elastic scattering theory (and random walk on a lattice approach), a model of laser-Doppler flowmetry (LDF) has been derived which can be applied to measurements in large tissue volumes (e.g. when the interoptode distance is >30 mm). The model holds for a semi-infinite medium and takes into account the transport-corrected scattering coefficient and the absorption coefficient of t...
متن کاملPerfusion Tensor Imaging of Human Skeletal Muscle
Introduction: The ability to non-invasively measure tissue perfusion is critical for assessing the physiological functions of human skeletal muscle in both healthy and disease states. The traditional techniques to measure tissue perfusion in human muscle are invasive and measure only bulk properties which do not render information on either spatial or temporal heterogeneity. Velocity selective ...
متن کاملFull-field laser-Doppler imaging and its physiological significance for tissue blood perfusion.
Using Monte Carlo simulations for a semi-infinite medium representing a skeletal muscle tissue, it is demonstrated that the zero- and first-order moments of the power spectrum for a representative pixel of a full-field laser-Doppler imager behave differently from classical laser-Doppler flowmetry. In particular, the zero-order moment has a very low sensitivity to tissue blood volume changes, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 48 15 شماره
صفحات -
تاریخ انتشار 2003